
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4553 230

Secured Load Rebalancing In Cloud
Bhavya.G

1
, Chaitra.B.N

2
, Chaitra.G

3
, Shruthi.C

4

Assistant Professor, Dept of Information Science, BMSIT, Bangalore, India
1

B.E Student, Dept of Information Science, BMSIT, Bangalore, India
2,3,4

Abstract: Distributed file systems are key building blocks for cloud computing applications based on the Map Reduce

programming paradigm. In such file systems, nodes simultaneously serve computing and storage functions. Files can

also be dynamically created, deleted, and appended. This results in load imbalance in a distributed file system; that is,

the file chunks are not distributed as uniformly as possible among the nodes.

Emerging distributed file systems in production systems strongly depend on a central node for chunk reallocation. This

dependence is clearly inadequate in a large-scale, failure-prone environment because the central load balancer is put

under considerable workload that is linearly scaled with the system size, and may thus become the performance

bottleneck and the single point of failure. In this proposal, a fully distributed load rebalancing algorithm is presented to

cope with the load imbalance problem.

Additionally, we aim to reduce network traffic or movement cost caused by rebalancing the loads of nodes as much as

possible to maximize the network bandwidth available to normal applications. Moreover, as failure is the norm, nodes

are newly added to sustain the overall system performance resulting in the heterogeneity of nodes. Exploiting capable

nodes to improve the system performance is thus demanded. In the proposed system we also provide security for the

data stored on cloud through encryption and decryption concepts.

Keywords: cloud computing, distributed file systems, map reduce, Load imbalance

I. INTRODUCTION

CLOUD Computing (or cloud for short) is a compelling

technology. In clouds, clients can dynamically allocate their

resources on-demand without sophisticated deployment and

management of resources. Key enabling technologies for

clouds include the Map Reduce programming paradigm [2],

distributed file systems [3], [4] virtualization [5], [6], and so

forth. These techniques emphasize scalability, so clouds can

be large in scale, and comprising entities can arbitrarily fail

and join while maintaining system reliability.

Distributed file systems are key building blocks for cloud

computing applications based on the Map Reduce

programming paradigm. In such file systems, nodes

simultaneously serve computing and storage functions; a

file is partitioned into a number of chunks allocated in

distinct nodes so that Map Reduce tasks can be performed

in parallel over the nodes. For example, consider a word

count application that counts the number of distinct words

and the frequency of each unique word in a large file. In

such an application, a cloud partitions the file into a large

number of disjointed and fixed-size pieces (or file chunks)

and assigns them to different cloud storage nodes (i.e.,

chunk servers). Each storage node (or node for short) then

calculates the frequency of each unique word by scanning

and parsing its local file chunks.

In such a distributed file system, the load of a node is

typically proportional to the number of file chunks the node

possesses [4]. Because the files in a cloud can be arbitrarily

created, deleted, and appended, and nodes can be upgraded,

replaced and added in the file system [8], the file chunks are

not distributed as uniformly as possible among the nodes.

Load balance among storage nodes is a critical function in

clouds. In a load-balanced cloud, the resources can be well

utilized and provisioned, maximizing the performance of

Map Reduce-based applications.

State-of-the-art distributed file systems (e.g.,

Google GFS [3] and Hadoop HDFS [4]) in clouds rely on

central nodes to manage the metadata information of the

file systems and to balance the loads of storage nodes based

on that metadata. The centralized approach simplifies the

design and implementation of a distributed file system.

However, recent experience (e.g.,[9]) concludes that when

the number of storage nodes, the number of files and the

number of accesses to files increase linearly, the central

nodes (e.g., the master in Google GFS) become a

performance bottleneck, as they are unable to accommodate

a large number of file accesses due to clients and Map

Reduce applications. Thus, depending on the central nodes

to tackle the load imbalance problem exacerbate their heavy

loads. Even with the latest development in distributed file

systems, the central nodes may still be overloaded. For

example, HDFS federation [10] suggests architecture with

multiple name nodes (i.e., the nodes managing the metadata

information). Its file system namespace is statically and

manually partitioned to a number of name nodes. However,

as the workload experienced by the name nodes may

change over time and no adaptive workload consolidation

and/or migration scheme is offered to balance the loads

among the name nodes, any of the name nodes may become

the performance bottleneck.

In this paper, we are interested in studying the load

rebalancing problem in distributed file systems specialized

for large-scale, dynamic and data-intensive clouds. (The

terms “rebalance” and “balance” are interchangeable in this

paper.) Such a large-scale cloud has hundreds or thousands

of nodes (and may reach tens of thousands in the future).

Our objective is to allocate the chunks of files as uniformly

as possible among the nodes such that no node manages an

excessive number of chunks. Additionally, we aim to

reduce network traffic (or movement cost) caused by

rebalancing the loads of nodes as much as possible to

maximize the network bandwidth available to normal

applications. Moreover, as failure is the norm, nodes are

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4553 231

newly added to sustain the overall system performance [3],

[4], resulting in the heterogeneity of nodes. Exploiting

capable nodes to improve the system performance is, thus,

demanded. Specifically, in this study, we suggest offloading

the load rebalancing task to storage nodes by having the

storage nodes balance their loads spontaneously. This

eliminates the dependence on central nodes. The storage

nodes are structured as a network based on distributed hash

tables (DHTs), e.g.[11][12][13], discovering a file chunk

can simply refer to rapid key lookup in DHTs, given that a

unique handle (or identifier) is assigned to each file chunk.

DHTs enable nodes to self-organize and -repair while

constantly offering lookup functionality in node dynamism,

simplifying the system provision and management.

In summary, our contributions are threefold as

follows: By leveraging DHTs, we present a load

rebalancing algorithm for distributing file chunks as

uniformly as possible and minimizing the movement cost as

much as possible. Particularly, our proposed algorithm

operates in a distributed manner in which nodes perform

their load-balancing tasks independently without

synchronization or global knowledge regarding the system.

Load-balancing algorithms based on DHTs have

been extensively studied. However, most existing solutions

are designed without considering both movement cost and

node heterogeneity and may introduce significant

maintenance network traffic to the DHTs. In contrast, our

proposal not only takes advantage of physical network

locality in the reallocation of file chunks to reduce the

movement cost but also exploits capable nodes to improve

the overall system performance. Additionally, our algorithm

reduces algorithmic overhead introduced to the DHTs as

much as possible.

In our proposal we are also implementing security

measures for the data stored on the cloud through

encryption. We are using AES encryption algorithm.

Our proposal is assessed through computer

simulations. The simulation results indicate that although

each node performs our load rebalancing algorithm.

Independently without acquiring global

knowledge, our proposal is comparable with the centralized

approach in Hadoop HDFS and remarkably outperforms the

competing distributed algorithm in terms of load imbalance

factor, movement cost, and algorithmic overhead.

Additionally, our load-balancing algorithm exhibits a fast

convergence rate. We derive analytical models to validate

the efficiency and effectiveness of our design. Moreover,

we have implemented our load-balancing algorithm in

HDFS and investigated its performance in a cluster

environment.

II.LITERATURE SURVEY

A. A fast adaptive load balancing method:

This method proposed a binary tree structure that

is used to partition the simulation region into sub-domains.

The characteristic of this fast adaptive balancing method is

to adjust the workload between the processors from local

areas to global areas. According to the difference of

workload, the arrangements of the cells are obtained. But

the main workload concentrates on certain cells so that the

procedure of adjusting the vertices of the grid can be very

long. This problem can be avoided by the fast load

balancing adaptive method. Here the region should be

partitioned by using the binary tree mode, so that it contains

leaf nodes, child nodes, parent nodes etc. There were

partition line between the binary tree and the indexes of the

cells on the left are smaller than that of right and the

indexes on the top are smaller than the bottom. Calculate

the workload based on the balancing algorithm. This

algorithm has a faster balancing speed, less elapsed time

and less communication time cost of the simulation

procedure [17].

Advantages of this method are:

 Relative smaller communication overhead relative

smaller communication overhead,

 Faster balancing speed, and

 High efficiency.

The main disadvantage is:

 It cannot maintain the topology that is neighboring

cells cannot be maintained.

B. Honey Bee Behaviour Inspired Load Balancing:

This method proposed an algorithm named

honeybee behaviour inspired load balancing algorithm.

Here in this method load balancing is done across the

virtual machines for maximizing the throughput. The load

balancing in cloud computing can be achieved by modelling

the foraging behaviour of honey bees. This algorithm is

derived from the behaviour of honey bees that uses the

method to find and reap food. In bee hives, there is a class

of bees called the scout bees and the another type was

forager bees .The scout bee which forage for food sources,

when they find the food, they come back to the beehive to

advertise this news by using a dance called

waggle/tremble/vibration dance. The purpose of this dance,

gives the idea of the quality and/or quantity of food and

also its distance from the beehive. Forager bees then follow

the Scout Bees to the location that they found food and then

begin to reap it. After that they return to the beehive and do

a tremble or vibration dance to other bees in the hive giving

an idea of how much food is left. The tasks removed from

the overloaded Virtual machines (VMs) act as Honey Bees.

Upon submission to the under load VM, it will update the

number of various priority tasks and load of tasks assigned

to that VM. This information will be helpful for other tasks

, i.e., whenever a high priority has to be submitted to VMs,

it should consider the VM that has a minimum number of

high priority tasks so that the particular task will be

executed earlier. Since all VMs are sorted in an ascending

order, the task removed will be submitted to under loaded

VMs. Current workload of all available VMs can be

calculated based on the information received from the data

centre [17].

Advantages are:

 maximizing the throughput,

 waiting time on task is minimum and

 Overhead become minimum.

The disadvantage is:

 If more priority based queues are there then the

lower priority load will stay continuously in the

queue.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4553 232

C. Heat Diffusion Based Dynamic Load Balancing:

 This method proposed an efficient cell selection

scheme and two heat diffusion based algorithm called

global and local diffusion. In distributed virtual

environments, various numbers of users and the load

accessing by the concurrent users cause a problem. This can

be avoided by this algorithm. According to the heat

diffusion algorithm, the virtual environment is divided into

large number of square cells and each square cell having

objects. The working of the heat diffusion algorithm is in

such a way that every node in the cell sends load to its

neighboring nodes in every iteration and the transfer was

the difference between the current nodes to that of

neighboring node. So it was related to heat diffusion

process. That is the transfer of heat from high to low object,

when they were placed adjacently. In local diffusion

algorithm, there were local decision making and efficient

cell selection schemes are used. Here they simply compared

the neighboring node loads to the adjacent node loads. If

load is small then the transfer of load becomes possible.

When global diffusion algorithm considered, it has two

stages that is global scheduling stage and local load

migration stage. From various experimental results the

global diffusion algorithm becomes the better one [17].

Advantages are:

 Communication overhead is less,

 high speed and

 Require little amount of calculations.

Disadvantages are:

 network delay is high and

 Several iterations are taken so there was a waste of

time.

D. Load Balancing in Dynamic Structured P2P Systems:

This method proposed an algorithm for load

balancing in dynamic peer-to-peer system and other hybrid

environments. In most peer-to-peer system the non uniform

of objects in the space and also the load of the node can be

changed continuously due to the insertion, deletion and

other various operations. This leads to decrease the

performance of the system. So the concept of virtual server

can be introduced. In this proposed load balancing

algorithm, the load information of the peer nodes is stored

in different directories. These directories help to schedule

reassignment of the virtual servers’ to develop a better

balance. Greedy heuristic algorithm used to find out a better

solution for the proper utilization of the nodes. The huge

number of virtual servers in the system helps to increase the

utilization. The various load information in to the

corresponding pool and then the virtual server assignments

are to be done. This proposed algorithm should be applied

to different types of resources like storage, bandwidth etc, It

was designed to handle the various situations like varying

load of the node, node capacity, entering and leaving of

nodes and also insertion and deletion of the nodes [17].

Advantages are:

 high node utilization and

 Increasing scalability.

Disadvantage is:

 The reassignment of the virtual server is difficult.

III.LOAD REBALANCING PROBLEM

We consider a large-scale distributed file system

consisting of a set of chunk servers V in a cloud, where the

cardinality of V is |V |=n. Typically, n can be 1,000, 10,000,

or more. In the system, a number of files are stored in the n

chunk servers. First, let us denote the set of files as F. Each

file f 2 F is partitioned into a number of disjointed, fixed

size chunks denoted by Cf. For example, each chunk has the

same size, 64 Mbytes, in Hadoop HDFS [4]. Second, the

load of a chunk server is proportional to the number of

chunks hosted by the server [4]. Third, node failure is the

norm in such a distributed system, and the chunk servers

may be upgraded, replaced and added in the system.

Finally, the files in F may be arbitrarily created, deleted,

and appended. The net effect results in file chunks not

being uniformly distributed to the chunk servers. Fig. 1

illustrates an example of the load rebalancing problem with

the assumption that the chunk servers are homogeneous and

have the same capacity.

Our objective in the current study is to design a

load rebalancing algorithm to reallocate file chunks such

that the chunks can be distributed to the system as

uniformly as possible while reducing the movement cost as

much as possible. Here, the movement cost is defined as the

number of chunks migrated to balance the loads of the

chunk servers.

 (a) (b) (c)

(d)

Fig. 1 [1]. An example illustrates the load rebalancing

problem, where (a) an initial distribution of chunks of six

files f1, f2, f3, f4, f5, and f6 in three nodes N1, N2, and N3, (b)

files f2 and f5 are deleted, (c) f6 is appended, and (d) node N4

joins. The nodes in (b), (c), and (d) are in a load-imbalanced

state.

III.LOAD REBALANCING ALGORITHM

In the algorithm, each node implements the gossip-

based aggregation protocol[14] in to collect the load

statuses of a sample of randomly selected nodes.

Specifically, each node contacts a number of randomly

selected nodes in the system and builds a vector denoted by

V. A vector consists of entries, and each entry contains the

ID, network address and load status of a randomly selected

node. Each chunk server nodefirst estimates whether it is

under loaded (light) or overloaded (heavy) without global

knowledge. Based on the global knowledge, if node i finds

it is the least-loaded node in the system, i leaves the system

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4553 233

by migrating its locally hosted chunks to its successor i+1

and then rejoins instantly as the successor of the heaviest

node (say, node j). To immediately relieve node j’s load,

node i requests min [Lj-T; T] chunks from j. Node j may

still remain as the heaviest node in the system after it has

migrated its load to node i. In this case, the current least-

loaded node, say node i
’
, departs and then rejoins the

system as j’s successor. That is, i
’
becomes node j+1, and j’s

original successor i thus becomes node j+2. Such a process

repeats iteratively until j is no longer the heaviest. Then, the

same process is executed to release the extra load on the

next heaviest node in the system. This process repeats until

all the heavy nodes in the system become light nodes.

Fig 2 [1]. An example illustrating our algorithm, where (a)

the initial loads of chunk servers N1;N2; . . .;N10, (b) N1

samples the loads of N1, N3, N6, N7, and N9 in order to

perform the load rebalancing algorithm, (c) N1 leaves and

sheds its loads to its successor N2, and then rejoins as N9’s

successor by allocating AeN1 chunks (the ideal number of

chunks N1 estimates to manage) from N9, (d) N4 collects

its sample set {N3;N4;N5;N6;N7}, and (e) N4 departs and

shifts its load to N5, and it then rejoins as the successor of

N6 by allocating L6 _ AeN4 chunks from N6.

Fig. 2 depicts a working example of our proposed

algorithm. There are n=10 chunk servers in the system; the

initial loads of the nodes are shown in Fig. 2a. Assume

∆l=∆v=0 in the example. Then, nodes N1, N2, N3, N4, and

N5 are light, and nodes N6, N7, N8, N9, and N10 are

heavy.

Each node performs the load-balancing algorithm

independently, and we choose N1 as an example to explain

the load-balancing algorithm. N1 first queries the loads of

N3, N6, N7, and N9 selected randomly from the system

(Fig. 2b). Based on the samples, N1 estimates the ideal load

T (i.e., T=((LN1+LN3+LN6+LN7+LN9)/5). It notices that it is a

light node. It then finds the heavy node it needs to request

chunks. The heavy node is the most loaded node (i.e., N9)

as N1 is the lightest among N1 and its sampled nodes {N3;

N6; N7; N9}. N1 then sheds its load to its successor N2,

departs from the system, and re-joins the system as the

successor of N9. N1 allocates min [LN9- TN1; TN1]=TN1

chunks from N9.

In the example, N4 also performs the load

rebalancing algorithm by first sampling {N3; N4; N5; N6;

N7} (Fig. 2d).Similarly, N4 determines to re-join as the

successor of N6. N4 then migrates its load to N5 and re-

joins as the successor of N6 (Fig. 2e). N4 requests min

[LN6-TN4, TN4] = LN6-TN4chunks from N6.N6 is physically

closer than N7 to N4.So, N4 re-joins as the successor of N6.

IV.SECURITY

The data to be stored in the cloud is encrypted

before storage for more security. The encryption is done by

the key generated at the client side. Then the encrypted data

is made into chunks and stored in various nodes.

When the server control performs operations on

data like deletion or updating load imbalance problem

occurs. This problem can be solved by the rebalancing

algorithm which balances the load in the cloud after the

above operations performed [16].

A. Encryption of data

The data that is to be stored in cloud is not secure.

In order to provide security to data, the data is stored in the

encrypted form in the nodes. The file that is to be uploaded

in the cloud is selected by the client. The encryption

process is performed over the data through AES

algorithm[15]. The encrypted file is made in chunks and

stored in various nodes [16].

B. Splitting the data

The encrypted file is partitioned into a number of

chunks and is allocated in distinct nodes. The load of a node

is typically proportional to the number of file chunks the

node possesses.

Because the files in a cloud can be arbitrarily

created, deleted, and appended, and nodes can be upgraded,

replaced and added in the file system. The chunks of files

are allocated uniformly among the nodes such that no node

manages an excessive number of chunks [16].

C. Sending Data to Cloud

As cloud is a centralized storage the data’s have no

security. So the encrypted file is made into chunks to

provide more security to store the data in the cloud.

The splitted files are stored in the cloud and can be

accessed from anywhere whenever needed. Thus storing a

single file in various nodes has more security when

compared to the file that is stored in a single node [16].

V.SYSTEM ARCHITECTURE

The Experimental setup of our proposal is as

shown in the below figure [1]:

 Fig 3: the setup of the experimental environment

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4553 234

VI.CONCLUSION

The overall goal of this paper is to make cloud

computing effective by implementing the techniques that

achieve the same. A novel load-balancing algorithm to deal

with the load rebalancing problem in large-scale, dynamic,

and distributed file systems in clouds has been presented in

this paper. Our proposal strives to balance the loads of

nodes and reduce the demanded movement cost as much as

possible, while taking advantage of physical network

locality and node heterogeneity. Particularly, our load-

balancing algorithm exhibits a fast convergence rate. Load

imbalance factor and algorithmic overhead are handled by

developed algorithm efficiently. The data are stored in the

cloud in the secure manner. The security for the data is

provided by the encryption. The file that is to be uploaded

in the cloud is encrypted by the key generated at the client

side. For encryption we have used AES algorithm

ACKNOWLEDGEMENT

We would like to thank our Guide Mrs.Bhavya.G Assistant

Professor of Dept. of Information and Science and all of

them who supported in completing this paper successfully.

REFERENCES
[1] Hung-Chang Hsiao, Member, IEEE Computer Society, Hsueh-Yi

Chung,Haiying Shen, Member, IEEE, and Yu-Chang Chao,” Load

Rebalancing for Distributed File Systems in Clouds” IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 24, NO. 5, MAY 2013

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,”Proc. Sixth Symp. Operating System Design and
Implementation (OSDI ’04), pp. 137-150, Dec. 2004.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File

System,” Proc. 19th ACM Symp. Operating Systems Principles
(SOSP ’03), pp. 29-43, Oct. 2003.

[4] Hadoop Distributed File System, http://hadoop.apache.org/hdfs/, 2012.

[5] VMware, http://www.vmware.com/, 2012.
[6] Xen, http://www.xen.org/, 2012.

[7] Apache Hadoop, http://hadoop.apache.org/, 2012.

[8] Hadoop Distributed File System “Rebalancing Blocks,”
http://developer.yahoo.com/hadoop/tutorial/module2.html#rebalancing,2012.

[9] K. McKusick and S. Quinlan, “GFS: Evolution on Fast-

Forward,”Comm. ACM, vol. 53, no. 3, pp. 42-49, Jan. 2010.
[10] HDFS Federation,http:/hadoop.apache.org/ common/docs/r0.23.0/h

adoop-yarn/hadoop-yarn-site/Federation.html, 2012.

[11] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,

F. Dabek, and H.Balakrishnan, “Chord: A Scalable Peer-to-PeerLookup

Protocol for Internet Applications,” IEEE/ACM Trans.Networking, vol.

11, no. 1, pp. 17-21, Feb. 2003.
[12] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed

ObjectLocation and Routing for Large-Scale Peer-to-Peer Systems,”

Proc.IFIP/ACM Int’l Conf. Distributed Systems Platforms
Heidelberg,pp. 161-172, Nov. 2001.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.Vogels, “Dynamo:

Amazon’s Highly Available Key Value Store,”Proc. 21st ACM Symp. Operating

Systems Principles (SOSP ’07), pp. 205-220, Oct. 2007.

[14] http://en.wikipedia.org/wiki/Gossip_protocol

[15] http://aesencryption.net

[16] R.Rajavadivu, A.BazilaBanu,” Redistribution of Load in Cloud Using

Improved Distributed Load Balancing Algorithm with

Security”International Journal of Innovative Research in Science,

Engineering and Technology Volume 3, Special Issue 3, March 2014

[17] Rajesh George Rajan, V.Jeyakrishnan, ”A Survey on Load Balancing
in Cloud Computing Environments” International Journal of

Advanced Research in Computer and Communication Engineering Vol.

2, Issue 12, December 2013

